Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response.
نویسندگان
چکیده
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.
منابع مشابه
The Synergistic Effect of Combined Immunization with a DNA Vaccine and Chimeric Yellow Fever/Dengue Virus Leads to Strong Protection against Dengue
The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inocula...
متن کاملInduction of neutralizing antibodies specific to dengue virus serotypes 2 and 4 by a bivalent antigen composed of linked envelope domains III of these two serotypes.
There is no vaccine to prevent dengue fever, a mosquito-borne viral disease, caused by four serotypes of dengue viruses. In this study, which has been prompted by the emergence of dengue virus envelope domain III as a promising sub-unit vaccine candidate, we have examined the possibility of developing a chimeric bivalent antigen with the potential to elicit neutralizing antibodies against two s...
متن کاملDengue Vaccines.
The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has...
متن کاملHigh fidelity of yellow fever virus RNA polymerase.
Three consecutive plaque purifications of four chimeric yellow fever virus-dengue virus (ChimeriVax-DEN) vaccine candidates against dengue virus types 1 to 4 were performed. The genome of each candidate was sequenced by the consensus approach after plaque purification and additional passages in cell culture. Our data suggest that the nucleotide sequence error rate for SP6 RNA polymerase used in...
متن کاملRecombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates.
A chimeric yellow fever (YF)-dengue type 2 (dengue-2) virus (ChimeriVax-D2) was constructed using a recombinant cDNA infectious clone of a YF vaccine strain (YF 17D) as a backbone into which we inserted the premembrane (prM) and envelope (E) genes of dengue-2 virus (strain PUO-218 from a case of dengue fever in Bangkok, Thailand). The chimeric virus was recovered from the supernatant of Vero ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 74 17 شماره
صفحات -
تاریخ انتشار 2000